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When functional data are not homogenous, for example, when there are multiple classes of functional curves
in the dataset, traditional estimation methods may fail. In this article, we propose a new estimation procedure
for the mixture of Gaussian processes, to incorporate both functional and inhomogenous properties of the
data. Our method can be viewed as a natural extension of high-dimensional normal mixtures. However,
the key difference is that smoothed structures are imposed for both the mean and covariance functions.
The model is shown to be identifiable, and can be estimated efficiently by a combination of the ideas
from expectation-maximization (EM) algorithm, kernel regression, and functional principal component
analysis. Our methodology is empirically justified by Monte Carlo simulations and illustrated by an
analysis of a supermarket dataset.
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1. INTRODUCTION

The rapid development of information technologies enables
researchers to collect and store functional data at a low cost.
As a result, the quantitative analysis of functional data becomes
practically feasible; see Ramsay and Silverman (2005) for a
comprehensive and excellent treatment. The basis of functional
data analysis consists of the estimations of the mean function and
the covariance structure. Among many approaches, functional
principal component (FPC) analysis serves as a key technique in
functional data analysis. Rice and Silverman (1991) and James,
Hastie, and Sugar (2000) studied the spline smoothing meth-
ods in FPC analysis; Staniswalis and Lee (1998) and Yao et al.
(2003) applied kernel-based smoothing methods for FPC anal-
ysis in irregular and sparse longitudinal data. The asymptotic
properties of principal component functions were investigated
by Yao, Müller, and Wang (2005) and Hall, Müller, and Wang
(2006).

For an illustration of functional data, Figure 1 depicts the plot
of a set of collected curves. This dataset contains the number of
customers who visited a particular supermarket in China on each
of 139 days. For each day, the number of customers shopping
in the supermarket is observed every half hour from 7:00 a.m.
to 5:30 p.m. Thus, there are 22 observations for each day. The
collected time was coded as 1 for 7:00 a.m., 2 for 7:30 a.m.,
and so on. In the analysis of this dataset, we regard each day

as one subject. Thus, we have a total of 139 subjects. Figure 1
shows that the variability may be large in certain time periods.
Intuitively, the customer flow (i.e., the number of customers)
may show different patterns in weekdays, weekends, and holiday
season, and hence the data are likely inhomogenous. Although
the nominal identity (weekday, weekend, or holiday) of a subject
is known, they may switch to form long holidays by national
or local government policies, for example, the holiday week
of national day. In this article, we will treat the identities as
unknown. To statistically model such inhomogeneity for the
multivariate response, we may simply consider a mixture of 22-
dimensional multivariate normal distributions. Nevertheless, we
find this method less effective because the 22 × 22 covariance
matrices for each component have to be estimated. This has been
an inevitable step for a general normal mixture model. With
such a limited sample size (i.e., 139), the estimated covariance
matrices are likely to be ill conditioned. As a consequence, the
estimation accuracy of its inverse is very poor. In addition, if
the data are collected at irregular time points, the covariance
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Figure 1. Plot of supermarket data.

structure will be different for different subjects and thus the
mixture of multivariate normal distribution cannot be applied,
even when the sample size is large. This motivates us to develop
new methods for analysis of inhomogenous functional data.

Mixture of Gaussian processes is an interesting and useful al-
ternative to mixture of high-dimensional normals. In this article,
we propose a new smooth estimation procedure for mixture of
Gaussian processes. Compared with a general normal mixture,
the major advantage of our method is that smoothed structures
are imposed for both the mean and covariance functions. Within
this new framework, the unknown functions can be estimated
efficiently by a combination of the ideas from expectation-
maximization (EM) algorithm, kernel regression, and FPC anal-
ysis. Therefore, the challenging task of high-dimensional covari-
ance matrix estimation can be completely avoided. In addition,
the proposed mixture models can deal with data collected at ir-
regular, possibly subject-depending time points. It is clear that a
mixture of multivariate normals is not applicable for such data.

James and Sugar (2003) considered a general functional
model for clustering functional data, which is indeed a mixture
of Gaussian processes. In their approach, they represented indi-
vidual curves by natural cubic splines, and imposed some para-
metric assumptions and restrictions on the spline coefficients.
This version of the mixture of Gaussian processes is casted as a
structural parametric finite mixture of normals, which is referred
to as the functional clustering model. Maximum likelihood and
EM algorithm are developed for model estimation. Functional

clustering models have been studied and applied in literature.
In genetic research, Luan and Li (2003) considered a functional
clustering model for time-course gene expression data, in which
B-spline is used to model the mean and covariance function of
each component. Bayesian approaches for functional clustering
models are studied in Heard, Holmes, and Stephens (2006) and
Ma and Zhong (2008).

In this article, we shall systematically study the mixture of
Gaussian processes. We first prove that the mixture of Gaus-
sian processes is identifiable under mild conditions. We pro-
pose new estimation procedures using kernel regression and
modified EM-type algorithms. We introduce FPC analysis for
the estimation procedure, which provides the advantage of ef-
fective computation, for example, avoids the inverse of high-
dimensional covariance matrix, and facilitates the covariance
estimation. FPC analysis also provides a powerful tool to inter-
pret the results via the eigenvalue and eigenfunctions. Practical
guides for model selection are addressed, and a bootstrap pro-
cedure for constructing confidence intervals is proposed. We
empirically justify these estimation procedures by Monte Carlo
simulations, and an illustration in real data analysis, including
a detailed interpretation of the estimated FPCs.

The rest of this article is structured as follows. We present
the definition of mixture of Gaussian processes and give the
identifiability result in Section 2. In Section 3, we develop esti-
mation procedures for the newly proposed models. Simulation
results and an empirical analysis of supermarket dataset are
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presented in Section 4. Concluding remarks and some discus-
sions are given in Section 5. Proof is given in the Appendix.

2. MODEL AND IDENTIFIABILITY

Let C be a latent class variable with a discrete distribution
P (C = c) = ρc for c = 1, 2, . . . , C. It is assumed in this ar-
ticle that C is fixed and known. We will briefly discuss how
to determine C in Section 3. Given C = c, {X(t), t ∈ T} fol-
lows a Gaussian process with mean μc(t) and covariance func-
tion cov{X(s), X(t)} = Gc(s, t). We refer to {X(t) : t ∈ T} as
a mixture of Gaussian processes. Typically, T is a closed and
bounded time interval [0, T ]. It is assumed throughout this arti-
cle that μc(t) is a smooth function of t, and Gc(s, t) is a positive
definite and bivariate smooth function of s and t. Thus, the path
of X(t) indeed is a smooth function.

We first study the identifiability of the proposed mixture of
Gaussian processes (Proof is given in the Appendix.)

Theorem 1. Suppose Gc(s, t) is a positive definite and bivari-
ate smooth function of s and t and μc(t) is a smooth function
of t for any c = 1, . . . , C. Let S = {t ∈ T : (μi(t),Gi(t, t)) =
(μj (t),Gj (t, t)) for some 1 ≤ i �= j ≤ C}. If the complement
of S is not empty, then the above proposed mixture of Gaussian
processes is identifiable.

The covariance function Gc(s, t) can be represented as

Gc(s, t) =
∞∑

q=1

λqcvqc(t)vqc(s),

where λqc’s are eigenvalues, and vqc(·)’s are eigenfunctions.
Furthermore, we have λ1c ≥ λ2c ≥ · · · , and

∑
q λqc < ∞, for

c = 1, . . . , C. By the Karhunen–Loève theorem, if the ith sub-
ject Xi(t) is from the cth component, then it can be represented
as follows:

Xi(t) = μc(t) +
∞∑

q=1

ξiqcvqc(t),

where the FPC score ξiqc is considered as independent random
variables with E(ξiqc) = 0 and var(ξiqc) = λqc.

Since the sample path of Xi(t) is a smooth function of t, Xi(t)
is termed as a smooth random function (Yao, Müller, and Wang
2005). As depicted in Figure 1, the collected sample of random
curves is typically not smooth in practice. Following Yao et al.
(2003), it is assumed that the observed curve {yi(t), t = tij , j =
1, . . . , Ni} is

yi(t) = Xi(t) + εi(t),

where εi(t) is additive measurement error, and it is assumed that
εi(tij ), for all i and j, are independent and identically distributed
as N (0, σ 2). Denote yij = yi(tij ) and εij = εi(tij ). Throughout
this article, it is assumed that conditioning on C = c, the obser-
vations yij , j = 1, . . . , Ni and i = 1, . . . , n, follows

yij = μc(tij ) +
∞∑

q=1

ξiqcvqc(tij ) + εij , (2.1)

where εij ’s are independent and identically distributed of
N (0, σ 2).

We also consider a reduced model from model (2.1), where
the data within subjects are independent. This means that
Gc(s, t) = 0 if s �= t . Let σ ∗2

c (t) = Gc(t, t) + σ 2, it follows that
conditioning on C = c

yij = μc(tij ) + ε∗
ij , (2.2)

where ε∗
ij are independent with E(ε∗

ij ) = 0 and var(ε∗
ij ) =

σ ∗2
c (tij ). This is equivalent to treating yij ’s sampled from the

following distribution:

y(t) ∼
C∑

c=1

ρcN
{
μc(t), σ ∗2

c (t)
}
. (2.3)

Theorem 2. Suppose μc(t) and σ ∗
c (t) are smooth functions

of t for any c = 1, . . . , C. Let S∗ = {t ∈ T : (μi(t), σ ∗
i (t)) =

(μj (t), σ ∗
i (t)) for some 1 ≤ i �= j ≤ C}. If the complement of

S∗ is not empty, then the mixture model (2.3) is identifiable.

The proof of Theorem 2 (omitted) is similar to Theorem 1.

3. ESTIMATION PROCEDURES

3.1 Estimation of Model (2.3)

Denote by φ(y|μ, σ 2) the density function of N (μ, σ 2). Then
for model (2.3), the log-likelihood function of the collected data
is

n∑
i=1

log

⎡
⎣ C∑

c=1

ρc

Ni∏
j=1

φ
{
yij |μc(tij ), σ ∗2

c (tij )
}⎤⎦ . (3.1)

We now propose an EM-type algorithm to maximize (3.1).
Define the membership identity random variables

zic =
{

1, if {Xi(t), t ∈ T } is in the cth group,

0, otherwise.

Thus, the complete likelihood of {(yij , zic), j = 1, . . . , Ni, i =
1, . . . , n, c = 1, . . . C} is

n∏
i=1

C∏
c=1

⎡
⎣ρc

Ni∏
j=1

φ
{
yij |μc(tij ), σ ∗2

c (tij )
}⎤⎦

zic

.

After the lth iteration of the EM algorithm, suppose that we have
ρ(l)

c , σ ∗2(l)
c (·), and μ(l)

c (·). Thus, in the E-step of the (l + 1)th
iteration, the expectation of the latent variable zic is given by

r
(l+1)
ic = ρ(l)

c

[ ∏Ni

j=1 φ
{
yij |μ(l)

c (tij ), σ ∗2(l)
c (tij )

}]
∑C

c=1 ρ
(l)
c

[ ∏Ni

j=1 φ
{
yij |μ(l)

c (tij ), σ ∗2(l)
c (tij )

}] . (3.2)

In the M-step of the (l + 1)th iteration, we would maximize the
logarithm of complete log-likelihood function with zic replaced
by r

(l+1)
ic , which is

n∑
i=1

C∑
c=1

⎡
⎣r

(l+1)
ic log(ρc) + r

(l+1)
ic

Ni∑
j=1

log φ
{
yij |μc(tij ), σ ∗2

c (tij )
}⎤⎦.

This leads to

ρ(l+1)
c = 1

n

n∑
i=1

r
(l+1)
ic . (3.3)
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Note that both μc(·) and σ ∗2
c (·) are nonparametric smoothing

functions. Here, we use kernel regression to estimate μc(·)’s
and σ ∗2

c (·)’s. For any t0 ∈ T , we approximate μc(tij ) by μc(t0)
and σ ∗2

c (tij ) by σ ∗2
c (t0) for tij in the neighborhood of t0. Thus,

the corresponding local log-likelihood function is

n∑
i=1

C∑
c=1

r
(l+1)
ic

Ni∑
j=1

[
log φ

{
yij |μc(t0), σ ∗2

c (t0)
}]

Kh(tij − t0),

(3.4)

where Kh(t) is a rescaled kernel function h−1K(t/h) with a
kernel function K(t). Maximizing (3.4) with respect to μc(t0)
and σ ∗2

c (t0), c = 1, . . . , C, yields

μ(l+1)
c (t0) =

∑n
i=1

∑Ni

j=1 w
(l+1)
ijc yij∑n

i=1

∑Ni

j=1 w
(l+1)
ijc

, (3.5)

σ ∗2(l+1)
c (t0) =

∑n
i=1

∑Ni

j=1 w
(l+1)
ijc

{
yij − μ(l+1)

c (t0)
}2

∑n
i=1

∑Ni

j=1 w
(l+1)
ijc

, (3.6)

where w
(l+1)
ijc = r

(l+1)
ic Kh(tij − t0). In practice, we evaluate the

estimates at a set of grid points for the given label in the E-
step. Let {u1, . . . , ungrid} be a set of grid points at which the
estimated functions are evaluated, where ngrid is the number of
grid points. If the total number of observations J = ∑n

i=1 Ni ,
is not very large, we can directly use all the time points as
the grid points. Otherwise, we update μc(tij ) and σ ∗2

c (tij ), i =
1, . . . , n, j = 1, . . . , Ni by linearly interpolating μ(l+1)

c (uk) and
σ ∗2(l)

c (uk), k = 1, . . . , ngrid. Denote by ρ̃c, μ̃c(·), and σ̃ ∗2
c (·) the

resulting estimate of ρc, μc(·), and σ ∗2
c (·), respectively.

3.2 Estimation of Model (2.1)

3.2.1 Initial Estimation. For a Gaussian process, it is in-
evitable to estimate the mean functions first, and then estimate
the covariance function based on the residuals. As demonstrated
in Lin and Carroll (2000), the kernel generalized estimating
equation (GEE) method for repeated measurement data yields an
optimal estimate in a certain sense by pretending the data within
subjects are independent. Furthermore, kernel GEE method with
working independent covariance structure is easy to implement.
Therefore, for the mixture of Gaussian processes, it is natural
to adapt the estimation procedure of model (2.3), and pretend-
ing that the data within subjects are independent. We refer to
this procedure as an initial estimation with working indepen-
dent correlation. This yields the initial estimation of the mean
functions and probability identities of each subject.

3.2.2 Estimation of Covariances. We now deal with es-
timation of covariance functions using functional princi-
pal analysis. Let Ḡic(tij , til) = {yij − μ̃c(tij )}{yil − μ̃c(til)}.
Note that given C = c, cov{Y (t), Y (t)} = Gc(t, t) + σ 2, and
cov{Y (s), Y (t)} = Gc(s, t) for s �= t . If zic were observable,
then the covariance function Gc(s, t) could be estimated by a
two-dimensional kernel smoother, which is to minimize

n∑
i=1

zic

∑
1≤j �=l≤N

[Ḡic(tij , til) − β0]2Kh∗ (tij − s)Kh∗ (til − t),

(3.7)

with respect to β0. In practice, zic is a latent variable. Following
the idea of the EM algorithm, we replace zic by its expectation
ric given in (3.2), which was obtained in the initial estima-
tion procedure with working independent correlation. Thus, we
minimize

n∑
i=1

ric

∑
1≤j �=l≤N

[Ḡic(tij , til) − β0]2Kh∗ (tij − s)Kh∗(til − t),

(3.8)

with respect to β0. The minimizer Ĝc(s, t) ≡ β̂0 of (3.8) has a
closed form solution, given by

Ĝc(s, t)

=
∑n

i=1 ric

∑
1≤j �=l≤Ni

Ḡic(tij , til)Kh∗(tij − s)Kh∗ (til − t)∑n
i=1 ric

∑
1≤j �=l≤Ni

Kh∗(tij − s)Kh∗ (til − t)
.

(3.9)

Following Rice and Silverman (1991), the estimation of eigen-
values and eigenfunctions are based on discretizing the covari-
ance estimate Ĝc(s, t). The estimates of eigenvalues λ̂qc and
eigenfunctions v̂qc(·) are determined by eigenfunctions∫

T

Ĝc(s, t)v̂qc(s)ds = λ̂qcv̂qc(t), (3.10)

where v̂qc(t) satisfies
∫
T

v̂2
qc(t)dt = 1, and

∫
T

v̂pc(t)v̂qc(t)dt =
0 if p �= q. Then, in order for the resulting estimate of Gc(s, t)
to be positive definite, we set

Ĝc(s, t) =
∑

q

λ̂qcI (λ̂qc > 0)v̂qc(s)v̂qc(t).

3.2.3 An Iterative Estimation Procedure. Given μ̂c(t) and
v̂qc(t), the FPC score ξiqc can be estimated by

ξ̂iqc =
∫

T

{yi(t) − μ̂c(t)} v̂qc(t)dt. (3.11)

Furthermore, for j = 1, . . . , Ni and i = 1, . . . , n, define

η̂ic(tij ) =
∑

q

ξ̂iqcI (λ̂qc > 0)v̂qc(tij ), (3.12)

which is an estimate of ηic(tij ) = ∑
q ξiqcI (λqc > 0)vqc(tij ). Let

y∗
c (tij ) = yij − η̂ic(tij ). (3.13)

Then, conditioning on C = c, model (2.1) can be approximated
by

y∗
c (tij ) ≈ μc(tij ) + εij , (3.14)

where εij ’s are independent and identically distributed as
N (0, σ 2). Hence, with the aid of FPC analysis, we can transform
the correlated data to uncorrelated data with a few eigenval-
ues and eigenfunctions from the estimate of Gc(s, t). Based on
{y∗

c (tij ), i = 1, . . . , n, j = 1, . . . , Ni, c = 1, . . . , C}, the EM-
type algorithm for model (2.2) can be adapted to further im-
prove the estimate of μc(t), σ 2, and ρcs. Slight revision is made
according to the constant variance of (3.14), which is different
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from (2.2). Specifically, in the E-step, we find the probability

r
(l+1)
ic = ρ(l)

c

[∏Ni

j=1 φ
{
y∗

c (tij )|μ(l)
c (tij ), σ 2(l)

}]
∑C

c=1 ρ
(l)
c

[∏Ni

j=1 φ
{
y∗

c (tij )|μ(l)
c (tij ), σ 2(l)

}] . (3.15)

In the M-step, we update the estimates of μc(t), ρc, and σ 2. For
t0 ∈ {u1, . . . , ungrid},

μ(l+1)
c (t0) =

∑n
i=1

∑Ni

j=1 w
(l+1)
ijc y∗

c (tij )∑n
i=1

∑Ni

j=1 w
(l+1)
ijc

, (3.16)

where w
(l+1)
ijc = r

(l+1)
ic Kh(tij − t0), and

ρ(l+1)
c = 1

n

n∑
i=1

r
(l+1)
ic , (3.17)

σ 2(l+1) = 1∑n
i=1 Ni

n∑
i=1

C∑
c=1

Ni∑
j=1

r
(l+1)
ic

{
yij − μ(l+1)

c (tij )
}2

.

(3.18)

Furthermore, we update {μ(l+1)
c (tij ), i = 1, . . . , n, j = 1, . . . ,

Ni} by linearly interpolating μ(l+1)
c (uk), k = 1, . . . , ngrid.

To improve the estimation, we further propose an iterative
estimation procedure, which iterates between one cycle of the
above procedure, and the estimation of the covariance struc-
ture. The proposed estimation procedure can be summarized as
follows:

An Iterative Estimation Procedure.

Step 1: Calculate μ̃c(·) using the EM-type algorithm of (3.2)–
(3.6).

Step 2: Given μc(·), and rics, obtain Ĝc(s, t) using (3.9) and
calculate η̂ic(tij ) using (3.10), (3.11), and (3.12).

Step 3: Calculate y∗
c (tij ) in (3.13), update μc(t), σ 2, ρc, and

ric’s using (3.15)–(3.18).

Iteratively calculate Step 2 and Step 3 until convergence. It is
worth noting that this procedure is easy to implement, since it
avoids the disadvantages of high-dimensional mixture of nor-
mals, that is, the calculation of inverse of the covariance matrix.

Remark. For model (2.1), when the components are well sep-
arated, the initial estimation procedure estimates the mean func-
tions almost as well as the iterative procedure that incorporates
the correlations. When the components are very separated, the
component identities of the samples can be considered as known.
Therefore, the problem is similar to the traditional homogenous
functional data analysis. Typically, the estimated covariance has
a slower convergence rate than the estimated mean function,
and the convergence rate of the eigenfunctions relates to rate of
estimated covariance (Yao, Müller, and Wang 2005). Hence, es-
timating mean function by incorporating correlation via the esti-
mated eigenfunctions cannot be more efficient. However, when
the components are overlapped, estimation with incorporating
correlation can improve the estimation of component identities,
and therefore improve both estimations of mean and covariance
functions of each component. We will design simulation study
to illustrate this point in Section 4.

3.3 Practical Implementation Issues

Now we address some important practical issues, including
the choice of the number of components, bandwidth, and num-
ber of eigenfunctions. In practice, they may be determined in
the following sequence. The number of components shall be de-
termined before the bandwidth and number of eigenfunctions.
Once we choose number of components, we select the band-
widths for model (2.2) and the covariance estimates. With the
selected bandwidths, we then choose the number of eigenfunc-
tions for each component. Finally, we select the bandwidths
for the refined estimation procedure for mean functions and the
iterative estimation procedure.

3.3.1 Choice of the Number of Components. Choosing the
number of components C is a critical issue for mixture mod-
els. This article assumes the number of components is known.
But when the observations are dense, we may use a simple
approach to determine C by using the information criteria for
finite mixture of low-dimensional multivariate normals. Direct
implementation of the information criteria for mixture of Gaus-
sian processes is difficult since the degrees of freedom for mix-
ture of Gaussian processes is not well defined. As a practical
alternative, we recommend applying the Akaike information
criterion (AIC) or Bayesian information criterion (BIC) with a
finite mixture of multivariate normals for part of the observed
data. Specifically, for the supermarket data introduced in Sec-
tion 1, if the data are observed at (t1, . . . , tN ) for all subjects,
then we may take the partial data observed at (tk1, . . . , tkN ′ ), a
subset of (t1, . . . , tN ). In practice, the subsect (tk1, . . . , tkN ′ ) can
be every d points of (t1, . . . , tN ) for some d ≥ 2. For irregular
and unbalanced data, one may either bin the data over the ob-
served times or interpolate the data over a regular grid points,
and then further use the AIC or BIC to the selected part of the
binned data or interpolated data. By using partial data, we are
able to determine C before analysis using the proposed proce-
dure, and avoid the disadvantages of high-dimensional mixtures
of normals. This has been implemented in the real data analysis
in Section 4.2. For sparse data, further research is needed.

3.3.2 Bandwidth Selection. Bandwidth selection is an-
other important issue to be addressed. For initial estimation
based on model (2.2), we use the same bandwidth for mean and
variance functions for simplicity of computation, and the opti-
mal bandwidth can be determined via multifold cross-validation
(CV) method. For the covariance functions in Section 3.2.2, we
may use one-curve-leave-out CV to choose this smoothing pa-
rameter, which has been suggested in the literature of covariance
function smoothing (Rice and Silverman 1991; Yao, Müller, and
Wang 2005). We also consider the generalized cross-validation
(GCV) method given by the released codes associated with Yao,
Müller, and Wang (2005). The bandwidth selection in the refined
estimation in Section 3.2.3 only involves the mean function, and
it can be determined by CV or GCV method. The simulation
results in Section 4 demonstrate that the proposed estimation
procedure works quite well in a wide range of bandwidths.

3.3.3 Choice of the Number of Eigenfunctions. A proper
number of eigenfunctions is vital to provide a reasonable ap-
proximation to the Gaussian process in each component. Rice
and Silverman (1991) suggested using the CV method based
on the one-curve-leave-out prediction error. Yao, Müller, and
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Wang (2005) investigated AIC-type criteria in FPC analysis,
and found that while the AIC and CV give similar results, the
AIC is computationally more efficient than CV method. In prac-
tice, empirical criteria are also useful to select the number of
eigenfunctions. We may choose the number of eigenfunctions
so that the percentage of total variation explained by the eigen-
functions is above a certain threshold, for example, 85% or
90%.

4. SIMULATION AND APPLICATION

In this section, we conduct numerical simulations to demon-
strate the performance of the proposed estimation procedures.
To assess the performance of the estimates of the unknown re-
gression functions μc(t), we consider the square root of the
average squared errors (RASE) for mean functions,

RASE2
μ = n−1

grid

C∑
c=1

ngrid∑
j=1

{μ̂c(uj ) − μc(uj )}2,

where {uj , j = 1, . . . , ngrid} are the grid points at which the
unknown functions μc(·) are evaluated. For simplification, the
grid points are taken evenly on the range of the tij ’s. In the
simulation, we set ngrid = 50. Similarly, we can define the RASE
of the eigenfunctions for the cth component, which is

RASE2
vc

= n−1
grid

Qc∑
q=1

ngrid∑
j=1

{v̂qc(uj ) − vqc(uj )}2,

where Qc is the number of eigenfunctions chosen as discussed
in Section 3.4. We are also interested in the average of mean
square of predicted error, given by

MSE =
(

n∑
i=1

Ni

)−1 n∑
i=1

Ni∑
j=1

{
yij −

C∑
c=1

r̂icX̂ic(tij )

}2

,

where X̂ic(tij ) = μ̂c(tij ) + η̂c(tij ). Mean squared error (MSE)
can be considered as a natural estimate of σ 2.

For confidence intervals and standard errors, we consider
a bootstrap procedure. Given the observed time {tij , j =
1, . . . , Ni}, we generate a multivariate normal bootstrap sam-
ple {yb(tij ), j = 1, . . . , Ni} with probability ρ̂c, where Eyb(t) =
μ̂c(t), and cov(yb(t), yb(s)) = Ĝc(t, s) + σ̂ 2I . Then, we obtain
the standard errors and confidence intervals by using our esti-
mation procedures in each of the bootstrapped samples.

4.1 Simulation Study

In the following example, we generate data from a two-
component mixture of Gaussian processes with

ρ1 = 0.45, ρ2 = 1 − ρ1 = 0.55, and σ 2 = 0.01,

μ1(t) = sin(πt), and μ2(t) = δ + 1.5 sin(πt),

v11(t) =
√

2 sin(πt), and v12(t) =
√

2 cos(πt),

v21(t) =
√

2 sin(4πt), and v22(t) =
√

2 cos(4πt).

The simulated data with sample size n = 100 are observed at
grid points {k/N, k = 1, . . . , N} for both components, where N
is set to be 20 and 40. Note that in this example, the data are bal-
anced. However, the computation will be similar for unbalanced
data. Let the eigenvalues for both components be λ11 = 0.04,
λ12 = 0.01, λ21 = 0.04, λ22 = 0.01, and λqc = 0, for q > 2,
c = 1, 2, and let the principal component scores ξiqc be gener-
ated from N (0, λqc), q = 1, 2, and c = 1, 2.

We consider two scenarios of simulation datasets from the
above data generation scheme. In the first scenario, we set
δ = 0.5. As demonstrated in the typical sample depicted in Fig-
ure 2(a), the subjects from the two components are well sep-
arated for this scenario. In the second scenario, we set δ = 0,
and the mean functions of the two components are close to each
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Figure 2. (a) Typical sample data for the well-separated setting, δ = 0.5; (b) typical sample data for the heavy-overlap setting δ = 0.
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Table 1. Estimation of mean functions and ρ1

Working independent Incorporating correlation

N δ RASEμ ρ1 = 0.45 RASEμ ρ1 = 0.45

20 0.5 0.059(0.012) 0.441(0.049) 0.058(0.012) 0.448(0.049)
0 0.128(0.035) 0.301(0.048) 0.059(0.012) 0.465(0.050)

40 0.5 0.053(0.014) 0.443(0.047) 0.052(0.014) 0.450(0.047)
0 0.113(0.031) 0.317(0.048) 0.052(0.014) 0.457(0.048)

other. Thus, the subjects from the two components are heavily
overlapping. A typical sample generated from this scenario is
depicted in Figure 2(b). We compare the performance of two es-
timation procedures: the estimation of (2.3) using the EM-type
algorithm, referred to as procedure of “working independent,”
and the estimation of (2.1) using the iterative estimation pro-
cedure, referred to as procedure of “incorporating correlation.”
The comparisons are conducted in both the well-separated set-
ting and the heavy-overlap setting. For the heavy-overlap set-
ting, we further investigate the performance of eigenfunction
estimation.

In the simulation, we assume that the number of components
C is known, and use the Epanechnikov kernel for functional
smoothing. The bandwidths of mean functions and covariance
functions are obtained by CV methods. In simulation, we used
a fixed bandwidth pair (ĥμ, ĥcov) for each simulated data. This
pair was selected as the average of optimal CV bandwidths
of several simulated dataset. Our experience shows that for a
wide range of ĥcov including the optimum one, the estimation
procedure “incorporating correlation” selected similar optimal
bandwidth ĥμ to the estimation procedure of “working indepen-
dent.” Hence, for the simplicity of our simulation study, we use
the same bandwidth for the mean functions in the two estima-
tion procedures. For the number of eigenfunctions, since both
CV and pseudo-AIC did not work well in our simulation, we
considered the rule-of-thumb criterion. In 500 simulations for
both cases δ = 0 and δ = 0.5, the threshold of 85% explained
variance selected the correct number of eigenfunctions for each
component in more than 90% runs. For computational consid-
eration, we also assume that the number of eigenfunctions is
known in our simulation.

Table 1 displays the simulation results for both the cases of
δ = 0.5 and δ = 0 over 500 simulations. The mean and standard
deviation of RASEμ, and the estimate of ρ1 are recorded for both
estimation procedures. The bandwidths are chosen as (ĥμ =
0.11, ĥcov = 0.10) when N = 20, and (ĥμ = 0.08, ĥcov = 0.08)
when N = 40. For the δ = 0.5 setting, the results show that the

proposed procedures perform quite well for the selected band-
widths in the two estimation procedures. This suggests that
when the components are well separated, the estimation proce-
dure incorporating correlations does not provide significant im-
provements compared to the working-independent procedure.
For the δ = 0 setting, the estimation procedure for working-
independent correlation performs quite poorly, and the estimate
of proportion parameter ρ1 has large bias. However, the estima-
tion procedure incorporating correlations does give much better
results: smaller RASEμ’s for the mean functions and more ac-
curate estimates of ρ1. The results agree with the explanations
in the remark of Section 3.2.3 as expected. For the iterative
estimation procedure, we further summarize the RASE of the
eigenfunctions for each component, the MSE, and the estimate
of σ 2 in Table 2. The results show that both the σ̂ 2 yielded by
the iterative procedure and the MSE are good estimates of σ 2.
In the heavy-overlap setting, the proposed iterative procedure is
able to provide good estimate of the eigenfunctions as well as
the separated setting.

The accuracy of the standard error via bootstrap method can
be assessed by Monte Carlo method. Tables 3 and 4 summarize
the performance of the standard errors of the mean functions
and principal component functions at t = 0.1, 0.2, . . . , 0.9. De-
noted by SD the standard deviation of 200 estimates, which can
be viewed as the true standard errors. The average and standard
deviation of the 200 estimated standard errors via bootstrap,
denoted by SE and Std, respectively, are recorded in rows. The
result shows that the proposed standard error method works
well for the mean functions and the eigenfunctions of the first
component. However, it does not give very good result for the
eigenfunctions of the second component. In simulation, we use
the same bandwidth hcov in both covariances smoothing for
simplicity of computation and bandwidth selection. The esti-
mation may be improved by using different bandwidths in each
component.

It is of interest to investigate whether the proposed model still
works fine if the data do not follow Gaussian process. To this

Table 2. Estimation of eigenfunctions and measurement error (δ = 0)

N δ RASEv1 RASEv2 MSE σ̂ 2 = 0.01

20 0.5 0.1682(0.0866) 0.2042(0.0624) 0.0102(0.0003) 0.0102(0.0003)
0 0.1526(0.0684) 0.2042(0.0625) 0.0102(0.0003) 0.0102(0.0003)

40 0.5 0.1481(0.0855) 0.2122(0.0506) 0.0111(0.0003) 0.0111(0.0003)
0 0.1394(0.0756) 0.2121(0.0506) 0.0111(0.0003) 0.0111(0.0003)
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Table 3. Bootstrap standard error (N = 20, δ = 0.5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SD 0.028 0.037 0.044 0.048 0.050 0.049 0.044 0.036 0.028
μ1(·) SE 0.027 0.032 0.038 0.043 0.045 0.043 0.039 0.033 0.027

Std 0.005 0.007 0.007 0.008 0.008 0.008 0.007 0.006 0.005
SD 0.032 0.025 0.025 0.031 0.020 0.033 0.026 0.026 0.031

μ2(·) SE 0.033 0.025 0.024 0.031 0.019 0.032 0.024 0.025 0.033
Std 0.005 0.004 0.004 0.005 0.004 0.005 0.005 0.004 0.004
SD 0.150 0.123 0.094 0.059 0.044 0.062 0.092 0.128 0.154

v11(·) SE 0.143 0.116 0.089 0.063 0.048 0.061 0.087 0.114 0.141
Std 0.036 0.029 0.023 0.015 0.010 0.014 0.023 0.032 0.038
SD 0.096 0.115 0.138 0.170 0.174 0.149 0.143 0.115 0.089

v12(·) SE 0.111 0.119 0.140 0.157 0.164 0.158 0.143 0.122 0.112
Std 0.020 0.019 0.025 0.031 0.033 0.030 0.026 0.020 0.021
SD 0.163 0.170 0.115 0.054 0.160 0.184 0.177 0.122 0.074

v21(·) SE 0.095 0.161 0.157 0.098 0.177 0.098 0.159 0.157 0.096
Std 0.060 0.073 0.081 0.089 0.091 0.089 0.081 0.069 0.061
SD 0.198 0.108 0.173 0.158 0.123 0.189 0.120 0.169 0.182

v22(·) SE 0.229 0.181 0.181 0.234 0.203 0.237 0.180 0.183 0.226
Std 0.057 0.034 0.046 0.043 0.044 0.054 0.036 0.046 0.053

end, we consider three non-Gaussian distributions for the error
term in model (2.1): (i) t-distribution with three degrees of free-
dom 0.1 × t(3); (ii) Laplace distribution 0.1 × Laplace(0, 1);
and (iii) centralized exp(1) distribution 0.1 × (exp(1) − 1). In
this simulation, we take the same setting as before except for
the three error distributions. For the case N = 20, we report
the mean and standard deviation of RASEμ, and the estimate
of ρ1 over 500 simulations. The results summarized in Table 5
demonstrate that our estimation procedure is not very sensitive
to the Gaussian assumption.

To investigate the performance of the proposed methodolo-
gies under large C, we conduct simulation studies by using
C = 20 and 50. In the simulations, random observations are
generated from a mixture of Gaussian processes with the fol-

lowing setting: ρc = 1/C, σ 2 = 0.01,

μc(t) =
{

sin(πt) + (c − 1)δ∗, if c is odd,

1.5 sin(πt) + (c − 1)δ∗ + 1, if c is even.

v1c(t) =
{√

2 sin(πt), if c is odd,√
2 sin(4πt), if c is even.

v2c(t) =
{√

2 cos(πt), if c is odd,√
2 cos(4πt), if c is even.

The eigenvalues for all components are set as λ1c = 0.04, λ2c =
0.01, and λqc = 0, for q > 2. The principal component scores
ξiqc are generated from N (0, λqc), q = 1, 2, and c = 1, . . . , C.

Table 4. Bootstrap standard error (N = 40, δ = 0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SD 0.024 0.030 0.037 0.043 0.044 0.043 0.039 0.032 0.026
μ1(·) SE 0.022 0.028 0.034 0.038 0.040 0.038 0.034 0.028 0.022

Std 0.003 0.004 0.005 0.005 0.005 0.005 0.005 0.004 0.003
SD 0.037 0.026 0.027 0.037 0.017 0.037 0.025 0.027 0.036

μ2(·) SE 0.035 0.027 0.027 0.035 0.020 0.035 0.026 0.027 0.035
Std 0.004 0.004 0.005 0.006 0.005 0.005 0.005 0.004 0.005
SD 0.143 0.123 0.093 0.055 0.035 0.056 0.093 0.126 0.146

v11(·) SE 0.120 0.104 0.079 0.051 0.039 0.053 0.081 0.104 0.120
Std 0.029 0.027 0.021 0.014 0.009 0.014 0.020 0.026 0.030
SD 0.072 0.110 0.135 0.156 0.164 0.154 0.130 0.104 0.074

v12(·) SE 0.087 0.104 0.124 0.139 0.144 0.139 0.123 0.102 0.084
Std 0.013 0.015 0.022 0.025 0.026 0.026 0.022 0.016 0.013
SD 0.060 0.121 0.122 0.053 0.145 0.054 0.122 0.120 0.055

v21(·) SE 0.077 0.137 0.138 0.079 0.165 0.080 0.141 0.135 0.078
Std 0.051 0.057 0.059 0.080 0.077 0.085 0.069 0.049 0.051
SD 0.153 0.105 0.105 0.150 0.063 0.153 0.105 0.110 0.147

v22(·) SE 0.185 0.145 0.145 0.192 0.137 0.196 0.146 0.147 0.184
Std 0.075 0.068 0.068 0.090 0.117 0.110 0.084 0.063 0.068
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Table 5. Comparisons for different error distributions

Working independent Incorporating correlation

Distribution δ RASEμ ρ1 = 0.45 RASEμ ρ1 = 0.45

t(3) 0.5 0.062(0.014) 0.442(0.049) 0.066(0.021) 0.459(0.052)
0 0.134(0.032) 0.301(0.050) 0.064(0.015) 0.485(0.055)

Laplace 0.5 0.060(0.013) 0.442(0.051) 0.059(0.012) 0.448(0.050)
0 0.131(0.032) 0.305(0.049) 0.058(0.011) 0.466(0.053)

Exp(1) 0.5 0.060(0.014) 0.443(0.049) 0.058(0.012) 0.449(0.049)
0 0.133(0.034) 0.303(0.051) 0.058(0.012) 0.466(0.052)

For both cases C = 20 and 50, the simulated data with sample
size n = 1000 are observed at grid points {k/N, k = 1, . . . , N}
for both components, where N = 20. We consider two sce-
narios: δ∗ = 4 for well-separated components, and δ∗ = 2 for
heavily overlapping components. We ran 100 simulations for
both scenarios, and the detailed results are given in Table 6. The
results show that the proposed procedures still perform well
when C is large.

4.2 Analysis of Supermarket Data

We use the proposed mixture of Gaussian processes and esti-
mation procedure to analyze the supermarket dataset, which is
depicted in Figure 1. We determine the number of component C
using some partial sparse data. Since BIC often chooses simple
models with finite sample, we consider the AIC for multivariate
mixture of normals with one, two, three, and four components.
We choose four sparse datasets, which are taken from the orig-
inal data for every four, five, and six time locations. The AIC
scores achieve the minimum at C = 3 for all the sparse datasets;
thus, it is reasonable to select a three-component model for
analysis.

We first analyze the data using the working-independent cor-
relation model (2.2) with three components. Without loss of
information, we transform the time interval of the data to [0, 1].
The smoothing parameter chosen by CV selector is hμ = 0.07.
The estimated proportions of the three components (from up
to down) are 0.1632, 0.4311, and 0.4057. The estimated mean
functions and a hard-clustering result are shown in Figure 3(a).
The hard clustering is obtained by assigning component identi-
ties according to the largest ric, c = 1, . . . , C. From this result
and the original data with actual calendar dates, we found that
the days in the upper class are mainly from the month of Chi-
nese spring festivals. Most Saturdays and Sundays fall in the
middle class, and the weekdays generally fall in the lower class.
The estimated mean functions can be viewed as estimated aver-

age customer flows of the three classes. We observed that there
are two peaks of customer flows for three components. The first
peak occurs around 9:00 a.m. in all components. The second
peak occurs around 2:00 p.m. for the first component, and 3:00
p.m. for the second and third component. This pattern may in-
dicate that people tend to buy earlier in the afternoon during the
days of spring festival. We further plot the estimated variance
functions of the three components in Figure 3(b). Combining
Figure 3(a) and 3(b), we observed that the variance functions
followed a similar pattern with the mean functions in three
components, in that a higher mean was associated with a higher
variance.

The next step is to analyze the data by using FPC analysis. The
selected bandwidth for the covariance function is hcov = 0.065.
Based on the estimated posterior, we estimate the covariance
functions and obtain estimates of the eigenfunctions of all com-
ponents. We plot the first two eigenfunctions of the three com-
ponents in Figure 4. For the upper class, the first eigenfunction
explains 51.70% of the total variation, and has a negative value
along its time interval from 9:00 a.m. to 5:30 p.m. It means
that a subject of this class (i.e., a day) with a positive (negative)
FPC score on this direction tends to have smaller (larger) cus-
tomer flows than the population average in a whole observed
time interval. We also observe that there are two negative peaks
(corresponding to two lowest local minimums) in the first eigen-
function, which occurs around 9:00 a.m. and 2:00 p.m. It means
that the variations of the customer flows are large in the two
peaks, especially for the peak at 9:00 a.m. Note that these peaks
are also observed in the first estimated variance function; there-
fore the results agree with each other as we expected. The second
eigenfunction, which explains 22.80% of the total variation, has
relatively small negative values in the morning and large positive
values in the afternoon. This means that a subject with a positive
FPC score on this direction tends to have smaller customer flow
in the morning and a higher customer flow in the afternoon. The
variation characterized by the second eigenfunction has a minor

Table 6. Simulation results for large C

Working independent Incorporating correlation

C δ∗ RASEμ ||ρ̂ − ρ|| RASEμ ||ρ̂ − ρ||
20 2 0.194(0.013) 0.030(0.005) 0.188(0.013) 0.030(0.005)

4 0.186(0.013) 0.029(0.005) 0.186(0.013) 0.029(0.005)
50 2 0.415(0.031) 0.031(0.003) 0.402(0.026) 0.031(0.003)

4 0.401(0.026) 0.031(0.003) 0.401(0.026) 0.031(0.003)
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Figure 3. (a) Estimated mean functions and clustering results based on posteriors; (b) estimated variance functions.

magnitude compared to the variation in the first eigenfunction,
where the magnitude is determined by the eigenvalues. The third
and fourth eigenfunction explains 7.58% and 4.28% of the total
variation, and is of little interest. The first four principal compo-
nents explain more than 85% of the total variation. Therefore,
we think that using four eigenfunctions is enough for the anal-
ysis of the upper class. Similarly, we can analyze and interpret
the eigenfunctions of the second component.

5. DISCUSSION

Finite mixture models are particularly useful as a flexible
modeling approach. In this article, we proposed new estima-
tion procedures for mixture of Gaussian processes. We imposed
smoothed structures for both mean and covariance functions
in each component, and showed that the mixture of Gaussian
processes is identifiable under certain conditions. We further
developed estimation procedures using kernel regression, EM
algorithm, and FPC analysis. The proposed procedure over-
comes several disadvantages of mixture of multivariate nor-
mals, such as “curse of dimensionality,” and computational in-
stability. It is easy to show that the computational complexities
are O(n × N × C × ngrid) and O(n × N2 × C × n2

grid + C ×
n3

grid) for model (2.3) and model (2.1), respectively. The finite
sample performance of the proposed method is examined by
Monte Carlo simulation.

The selection of the number of components is a challenging
problem. In this article, we considered a computationally simple
approach by fitting a multivariate normal mixtures to a partial
data and demonstrated its effectiveness through supermarket
data application. It requires further research to adaptively select
the number of mixture components using some more compli-
cated methods. We may start with some likelihood-based ap-
proaches such as the information criterion method or penalized
likelihood, however, a critical issue is to assess the model com-
plexity, that is, the effective number of parameters. In the non-
parametric mixture of regression models, model complexity can

be defined, for example, Huang, Li, and Wang (2013). However,
in the proposed framework, there are still difficulties to obtain
degree of freedom when we implement kernel regression and
functional PCA for covariance estimation. Further researches
on model complexity are needed. In addition to the primary in-
terests of model estimation, testing in mixture models is also a
very important issue. One may be interested in testing whether
the mean functions are constant, or of a linear form. This issue
can be further studied along the lines of nonparametric likeli-
hood ratio test, for example, Fan, Zhang, and Zhang (2001). It is
interesting to study whether the Wilks Phenomenon still holds
for the mixture of Gaussian processes.

In real application, data may not follow Gaussian process. We
conducted some simulation to investigate whether the proposed
model still works if the data do not follow Gaussian process.
The results demonstrate that our method still works well when
the error term in model (2.1) follows some other finite-moment
distributions, such as t-distribution, Laplace distribution, and
centralized exponential distribution. When there are additional
functional covariate inputs, mixture of Gaussian process regres-
sion (Shi et al. 2005, 2007) can be used. It will be interesting to
study how the proposed estimation methods in this article can
be extended to the regression setting.

APPENDIX: PROOF OF THEOREM 1

Suppose that {X(t), t ∈ T } admits another representation
such that given D = d, {X(t), t ∈ T } follows a Gaussian pro-
cess with mean νd (t) and covariance function cov{X(s), X(t)} =
Hd (s, t), d = 1, . . . , D. In addition, P (D = d) = πd .
Therefore,

X(r) ∼
D∑

d=1

πdN (νd (r),Hd (r, r)) =
C∑

c=1

ρcN (μc(r),Gc(r, r)).

Since the complement of S is not empty, there exists
r ∈ T such that for any 1 ≤ j �= k ≤ C, (μj (r),Gj (r, r)) �=
(μk(r),Gk(r, r)). Based on the identifiability of finite mixture
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Figure 4. (a) First two eigenfunctions of the upper class; (b) first two eigenfunctions of the middle class; and (c) first two eigenfunctions of
the lower class.

of normal distribution (see Titterington et al. 1985, p. 38,
Example 3.1.4), D = C and there exists a permutation w =
(w(1), . . . , w(C)) such that

πw(c) = ρc, νw(c)(r) = μc(r),Hw(c)(r, r) = Gc(r, r),

c = 1, . . . , C. (A.1)

Then for any pair (s, t) such that r �= s, r �= t , and s �= t ,

(X(r), X(s), X(t))T ∼
C∑

c=1

ρcN3 (νc(r, s, t), Hc(r, s, t))

=
C∑

c=1

πcN3
(
μc(r, s, t), Gc(r, s, t)

)
,

where

νc(r, s, t) =
⎛
⎝ νc(r)

νc(s)
νc(t)

⎞
⎠ ,

Hc(r, s, t) =
⎛
⎝ Hc(r, r) Hc(r, s) Hc(r, t)

Hc(s, r) Hc(s, s) Hc(s, t)
Hc(t, r) Hc(t, s) Hc(t, t)

⎞
⎠ ,

μc(r, s, t) =
⎛
⎝μc(r)

μc(s)
μc(t)

⎞
⎠ ,

Gc(r, s, t) =
⎛
⎝ Gc(r, r) Gc(r, s) Gc(r, t)

Gc(s, r) Gc(s, s) Gc(s, t)
Gc(t, r) Gc(t, s) Gc(t, t)

⎞
⎠ .

Note that (μc(r),Gc(r, r))’s are different for different com-
ponents. Based on Yakowitz and Spragins (1968), the above
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multivariate normal mixture model is identifiable. Therefore,
there exists a permutation ws,t = (ws,t (1), . . . , ws,t (C)) such
that

πws,t (c) = ρc, νws,t (c)(r, s, t) = μc(s, t),

Hws,t (c)(r, s, t) = Gc(r, s, t), c = 1, . . . , C.

Noting that (μc(r),Gc(r, r))’s are different for different com-
ponents, based on (A.1),

ws,t (c) = w(c), c = 1, . . . , C, for any (s, t),

where w(·) is defined in (A.1). Therefore, for any (s, t), such
that r �= s, r �= t , and s �= t , we have

πw(c) = ρc, νw(c)(t) = μc(t),

Hw(c)(s, t) = Gc(s, t), c = 1, . . . , C. (A.2)

In addition, since μc(·) and Gc(·) are continuous func-
tions, νw(c)(t) = μc(t),Hw(c)(r, t) = Gc(r, t), and Hw(c)(r, r) =
Gc(r, r). Therefore, there exists a constant permutation w =
(w(1), . . . , w(C)), which is independent of (s, t), such that

πw(c) = ρc, νw(c)(r) = μc(r),

Hw(c)(r, s) = Gc(r, s), c = 1, . . . , C. (A.3)

This completes the proof of identifiability.
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